Mech Eng 5570 / Aero Eng 5570 / Nuc Eng 4370 / Physics 4543: Plasma Physics 1 (Lect 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Wave phenomena in plasmas. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory.
Mech Eng 4001/Aero Eng 5830: Special Topics - Applied Computational Methods (Lect 3.0)
Detailed study of various computational methods for efficient numerical solution of selected fluid/structural mechanics, thermodynamics, and controls problems in aerospace and mechanical engineering. In addition to basic numerical method techniques, topics to be covered include gradient-based optimization techniques, response surface approximation, and uncertainty quantification involving spectral approaches.
Mech Eng 5537 – Fuel Cell Principles (Lect 3.0)
Fuel cell fundamentals including thermodynamics, reaction kinetics, mass transport, characterization, and modeling are discussed. Different types of fuel cells such as proton exchange membrane and solid oxide are covered together with subsystem design and system integration as well as environmental impacts. Prerequisite Mech Eng 3521.
Mech Eng/Aero Eng 5525: Intermediate Heat Transfer (Lect 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 3525.
Mech Eng 5527/Aero Eng 5527: Combustion Processes (Lect 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 3521.
Mech Eng 5131/Aero Eng 5131: Intermediate Thermo-fluid Mechanics (Lect 3.0)
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics & MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 3131.
Mech Eng 5533: Internal Combustion Engines (Lect 3.0)
A course dealing primarily with spark ignition and compression ignition engines. Topics include: thermodynamics, air and fuel metering, emissions and their control, performance, fuels and matching engine and load. Significant lecture material drawn from current publications. Prerequisite: Mech Eng 3521.
Mech Eng 5541: Applied Energy Conversion (Lect 3.0)
The study of the principles of energy conversion. Specific applications include fuel cells and other direct energy conversion devices used in plug-in hybrid electric vehicles.
Aero Eng 5535: Aerospace Propulsion Systems (Lect 3.0)
Study of atmospheric and space propulsion systems with emphasis on topics of particular current interest. Mission analysis in space as it affects the propulsion system. Power generation in space including direct and indirect energy conversion schemes. Prerequisite: Aero Eng 4535.
Mech Eng/Aero Eng 5139: Computational Fluid Dynamics (Lect 3.0)
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 1570 or 1970 or 1971; one course in fluid mechanics
Mech Eng 5566: Solar Energy Technology (Lect 3.0)
Introduction to the nature of solar radiation and associated thermal energy transfers. Methods of collecting and storing solar energy. Analysis and design of systems for utilizing solar energy, including heating and cooling. Prerequisites: Mech Eng 3525 or consent of instructor.
Mech Eng/Aero Eng 6122: Viscous Fluid Flow (Lect 3.0)
Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; stability, transition, and turbulence, CFD simulations of internal and external flows. Prerequisite: Mech Eng 5131/Aero Eng 5131 or Mech Eng/Aero Eng 5139 or approval of instructor.
Mech Eng/ Aero Eng 6527: Heat Transfer by Convection (Lect 3.0)
An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mech Eng 5525 (325) / Aero Eng 5525 (325) or Mech Eng 5131/Aero Eng 5131 or approval of instructor.
Mech Eng/Aero Eng 6131: Gas Dynamics I (Lect 3.0)
A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mech Eng 5131/Aero Eng 5131 or approval of instructor.
Mech Eng 6135/Aero Eng 6135: Turbulence in Fluid Flow (Lect 3.0)
Fundamentals of statistical theory of turbulence; turbulence modeling for transport processes of heat, mass, and momentum; closure schemes for Reynolds-averaged Navier-Stokes equations in free turbulence and wall turbulence; CFD simulations of turbulent flows. Prerequisite: Mech Eng 5131/Aero Eng 5131 or Mech Eng/Aero Eng 5139 or approval of instructor.
Mech Eng/Aero Eng 6137: Physical Gas Dynamics I (Lect 3.0)
Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and non-equilibrium gas properties and gas flows are included. Prerequisite: Mech Eng 5131/Aero Eng 5131 or approval of instructor.
* Curriculum is subject to change. Please contact the department for up-to-date information on courses. Other courses approved by the department may be substituted for any of the above listed courses on a case-by-case basis. The administrative coordinators must approve the substitution prior to enrolling in the course.
Return to Top
Follow Distance Education