Physical Gas Dynamics (AE/ME 6137)
Syllabus

Instructor: J.L. Rovey, 194 Toomey Hall, Phone: 341-4613, email: roveyj@mst.edu
Class Time: TTh 9:30-10:15AM, Comp. Sci. 209
Office hours: 1-4PM Mon, 1-2 & 3-5 Weds or by appointment.

Text: Vincenti & Kruger, Introduction to Physical Gas Dynamics

References:
Vincenti & Kruger, Introduction to Physical Gas Dynamics
Gombosi, Gaskinetic Theory
Bird, Molecular Gas Dynamics
Chapman & Cowling, The Mathematical Theory of Non-Uniform Gases
Hanna, Quantum Mechanics in Chemistry
Herzberg, Spectra of Diatomic Molecules
Hirschfelder, Curtiss & Bird, Molecular Theory of Gases & Liquids
Incropera, Introduction to Molecular Structure & Thermodynamics
Levine & Bernstein, Molecular Reaction Dynamics

Grading:
A 90% and above
B 80 - 89 %
C 70 - 79 %
F below 70%

Weightages:
Homework, 6 assignments, 5% each 30%
1 mid-term exam 30%
Final Exam (Date TBD) 40%

Notes:
• There are NO make-up exams or quizzes.
• The final exam is cumulative (it covers everything).
• Homework will be due on Thursday at the beginning of class. No Late Homework accepted.

Communication:
Please check your email daily. I also plan to use CANVAS to post HW, handouts, announcements, etc. http://canvas.mst.edu

Academic Dishonesty: http://registrar.mst.edu/academicregs/index.html
Page 30 of the Student Academic Regulations handbook describes the student standard of conduct relative to the University of Missouri System's Collected Rules and Regulations section 200.010, and offers descriptions of academic dishonesty including cheating, plagiarism or sabotage (http://registrar.mst.edu/academicregs/index.html). Additional guidance for faculty, including the University’s Academic Dishonesty Procedures, is available on-line at http://ugs.mst.edu. Other
informational resources for students regarding ethics and integrity can be found online at http://ugs.mst.edu/academicintegrity/studentresources-ai

Classroom Egress Maps:
Please familiarize yourselves with the classroom egress maps posted on-line at: http://designconstruction.mst.edu/floorplan/

Title IX:
Missouri University of Science and Technology is committed to the safety and well-being of all members of its community. US Federal Law Title IX states that no member of the university community shall, on the basis of sex, be excluded from participation in, or be denied benefits of, or be subjected to discrimination under any education program or activity. Furthermore, in accordance with Title IX guidelines from the US Office of Civil Rights, Missouri S&T requires that all faculty and staff members report, to the Missouri S&T Title IX Coordinator, any notice of sexual harassment, abuse, and/or violence (including personal relational abuse, relational/domestic violence, and stalking) disclosed through communication including but not limited to direct conversation, email, social media, classroom papers and homework exercises.

Missouri S&T’s Title IX Coordinator is Vice Chancellor Shenethia Manuel. Contact her directly (manuels@mst.edu; (573) 341-4920; 113 Centennial Hall) to report Title IX violations. To learn more about Title IX resources and reporting options (confidential and non-confidential) available to Missouri S&T students, staff, and faculty, please visit http://titleix.mst.edu.

Disability Support Services: http://dss.mst.edu
It is the policy and practice of Missouri University of Science and Technology to promote inclusive learning environments. If you have a documented disability you may be eligible for reasonable accommodations in compliance with university policy, the Americans with Disabilities Act of 1990, the Americans with Disabilities Amendment Act (ADAAA) of 2008, and Section 504 of the Rehabilitation Act of 1973. Please note, students are not encouraged to negotiate accommodations directly with professors.

To request accommodations or assistance, please self-identify with Disability Support Services (DSS), 203 Norwood Hall. For more information or to register for services, contact DSS at (573) 341-6655 or by email at dss@mst.edu.
I. Introduction

II. Introduction to Kinetic Theory
 a. Particle Model, V&K 1-7
 b. Macroscopic Quantities, V&K 7-15
 c. Internal Energy
 d. Molecular Collisions, V&K 12-15
 e. Molecular Transport Processes, V&K 15-23
 f. Molecular Magnitudes

III. Kinetic Theory Analysis
 a. Velocity Distribution Function, V&K 27-41, 328-332
 b. Boltzmann Equation
 c. Equilibrium VDF or Maxwellian VDF, V&K 42-47
 d. Equilibrium Collision Rate, V&K 48-54
 e. Equilibrium Mean Free Path, V&K 52-5
 f. Nonequilibrium Analysis

IV. Internal Atomic/Molecular Structure (Quantum Mechanics)
 a. Quantum Mechanics
 b. Schrodinger Eqn.
 c. Solution of Schrodinger Eqn.
 d. Atomic Structure
 e. Structure of Diatomic Molecules

Mid-Term EXAM

V. Statistical Mechanics
 a. Statistical Counting Methods, V&K 86-99
 b. Distribution of Energy States, V&K 101-112
 c. Relation to Thermodynamics, V&K 112-120
 d. Partition Functions, V&K 120-130
 e. Reacting Systems, V&K 139-150

VI. Chemical Rate Processes, V&K 152-176
 a. Equilibrium Processes
 b. Finite Rate Processes, V&K 210-232